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Abstract—A mathematical model for the development of a segregated layer of exudated droplets during

DC casting of aluminum ingots is established. The model accounts for the metallostatic pressure driven

interdendritic melt flow through the mushy zone by a Darcy type equation, the surface segregation due to

this melt flow, and the decrease of the total solute concentration in different positions of the mush as a

result of the exudation. The solution domain for the governing differential equations is constituted by the

mushy zone of the cast. The main physical phenomena included in the model have been studied in a simple
one dimensional case study.

1. INTRODUCTION

THE SURFACE quality of DC cast aluminum ingots
is often reduced by a segregated layer of exudated
droplets. Compared to the nominal content of alloy-
ing clements, the surface layer is considerably
enriched, and it is believed to be a main cause of
edge cracking during hot rolling of DC cast slabs [1].
Furthermore, surface segregation developed during
casting of extrusion ingots can lead to large local
variations in extruded profiles. The removal of the
exudations before further processing of the ingot
entails high costs.

This kind of surface segregation is caused by inter-
dendritic flow of enriched liquid through the mushy
zone. Two essential driving forces for surface seg-
regation are believed to exist, namely the metallostatic
pressure and forces generated by the volume expan-
sion of the re-heated, mushy shell. Ohm and Engler
[2] separated these two mechanisms experimentally,
and showed that a surface segregation layer caused
by volume expansion is very small compared to a layer
resulting from a pressure driven exudation. Also other
authors [3-6] state that surface segregation in alumi-
num DC casting is caused by a pressure drop through
the mushy zone, and that this drop is induced by air
gap formation between the partly solidified shell and
the mould. A sketch of the principles of this mech-
anism is shown in Fig. 1.

This report is directed towards the mathematical
modelling of this surface segregation phenomenon.
Our aim is to establish a set of differential equations
by which pressure driven interdendritic melt flow, as
indicated in Fig. 1, and its interaction with the solid—
liquid phase transition in the mush can be modelled.

In former studies on macrosegregation the various
types such as, for example, centerline segregation and
inverse segregation, were treated as separate phenom-
ena. Flemings and Nereo [7] showed, however, that
these as well as other types of macrosegregation result

from the same basic mechanism, and can quan-
titatively be described by the same set of equations.
A similar point of view lies behind the more recent
literature in which the differential field equations for
the mechanics of the mushy zone have been tho-
roughly discussed. Important references are [8—13],
and several other relevant papers are cited in these
references. Most of the case studies based on the math-
ematical field descriptions are concerned with prob-
lems in which thermal or thermo-solutal, free con-
vection is the driving mechanism for the interdendritic
melt flow. We believe, though, that the metallostatic
pressure driven interdendritic melt flow in Fig. | could
also have been modelled if pertinent boundary con-
ditions on the pressure field were imposed. However,
no such studies are known to the author.

Of particular interest to the present study is Bux-
mann’s paper [5] in which a problem similar to ours
was modelled. While Buxmann based the melt flow
modelling on a global treatment of the mushy zone,
we have represented the mush by a Darcy type of
momentum balance differential equation with a liquid
fraction dependent permeability.

Even though the basis for our modelling has been
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F1G. 1. Principles of the surface segregation mechanism in
aluminum DC casting.

4335



4336 A. Mo
NOMENCLATURE

1] slope of the liquidus line of the phasc t time (s]
diagram [K] T temperature [K]

h temperature gradient in the case study T,  liquidus temperature [K]
[Km™1 Ty, initial liquidus temperature [K]

¢ solute concentration in the liquid part of T liquidus temperature of pure aluminum
a volume element [—] K]

¢ total solute concentration in a volume v, superficial velocity component [ms ']
clement [—] 4 superficial velocity in the case study

Cy initial solute concentration [—] [ms ']

A¢ macrosegregation in the mushy zone. X position vector component [m]
c—co -1 X position in the case study [m]

¢ specific heat [Jkg™' K" Xo bottom position for the mushy zone in

f liquid fraction [—]

g acceleration due to gravity [ms™7]
k equilibrium partition ratio [—]

K permeability [m?]

L specific heat of fusion [T kg ']

P pressure [Nm 7]

Do metallostatic pressure at x = x; in the
case study [Nm 7]

r top position of the mushy zone in the case
study [m]

Ar mean thickness of the surface layer [m]

the case study [m].

Greek symbols
J Kronecker delta [—]
material parameter, n?/8zt* [m?

i

i

N primary dendrite spacing [m]

u dynamic liquid viscosity [Nsm 7]
7 thermal conductivity [Wm 'K ']
P density [kgm ™

T tortuosity [—].

found in the differential equation literature cited
above, a major intention is to simplify the math-
ematical description as much as possible. The model,
and the assumptions behind it are discussed in Section
2, and Section 3 is devoted to a simple one dimensional
case study.

2. GOVERN!NG EQUATIONS

Three physical phenomenon are to be accounted
for by the model. These are the forced convection of
the interdendritic melt flow due to the pressure drop
through the mushy zone, the surface segregation
caused by this melt flow, and the decrease of the total
solute concentration, i.e. the macrosegregation, as a
result of the exudation. It should be noted that the
decrease of the total solute concentration leads to a
decrease in liquid fraction, i.e. solidification.

We apply a frame of reference moving with the
same velocity as the completely solidified part of the
cast. The spatial coordinates are denoted by x; (i = 1,
2. 3) (cf. Fig. 1) and ¢ is time. The volume averaged,
or superficial, velocity, V; is applied as the measure
for melt motion. Since forces generated by volume
expansion are of minor importance, we assume that
the solid and liquid densities are constant and equal.

This means that the continuity equation reduces to
v,
ox,

0. (1)

The solid part of the mush is assumed to be inter-

connected and moving with the same speed as the
completely solidified part of the cast, and no defor-
mation of this solid matrix takes place. The momen-
tum balance in the mush is modelled by a Darcy type
equation

v, @ .
K+ Tt pgon =0 @)
K ox

i

where the permeability K is dependent on the liquid
fraction. p, p, g and u are here the pressure, the density,
the acceleration due to gravity and the dynamic liquid
viscosity respectively, and J;; is the Kronecker delta.

The solution domain for the melt flow problem is
restricted to the mush by imposing the pressure along
the liquidus isotherm as a boundary condition, and
assuming this pressure to be equal to the known metal-
lostatic pressure. This assumption implies that the
interaction between the studied forced convective flow
and any free convection in the interdendritic melt or
in the liquid above the mush resulting from buoyancy
forces is neglected.

Close to the liquidus isotherm, it might be some-
what inaccurate to neglect this interaction since the
pressure drop associated with the forced convection
decreases with increasing permeability. In industrial
aluminum alloys, typical values of the density difter-
ence between ‘hot’ and ‘cold” or between ‘pure’ and
‘enriched’ regions are of the order 100 kg m " *. The
buoyancy force, which is represented by a gravity
multiplied by this density difference term, is therefore
of the order 10° N m~*. However, the pressure gradi-
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ent will increase and become considerably larger than
the buoyancy forces as the permeability decreases. A
metallostatic head of for example 0.04 m acting on a
mush of thickness 0.1 m leads to a total pressure
gradient through the mush of the order of 10° N m™*
which is 10 times larger than the buoyancy forces.

It should be noted that the position of the mush-
liquid boundary is determined by the time evolution

1t rm
of the temperature field. The position will furthermore

be changed by a change in the total solute con-
centration at the mush boundary. even if the tem-
perature is constant.

The other boundaries are the mush-solid, mush—
air and mush-mould/hot top interfaces (cf. Fig. 1). p
equals zero along the mush—air interface, and along
the mush-solid and mush—mould/hot top interfaces,

........... salanién

of the supculuai vCioCity
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equals zero.

Different relations between the permeability, K, and
the liguid fraction, f, exist in the literature (see for
example [14-19]). In the case study in Section 3 we
have simply assumed the permeability to be pro-
portional to the liquid fraction squared as derived and
applied by Mehrabian et al. [20] in the modelling of
interdendritic fluid flow under influence of gravity.

We restrict the study to a binary alloy, and model
the solidificaton by the Scheil equation written in the
form

o Lac of
& =5 t=Rey S

where ¢ is the total solute concentration, ¢ the solute
concentration in the liquid part of the mush and
k = k(¢) the equilibrium partition ratio. We fur-
thermore assume that solute enters or leaves the vol-
ume element by liquid flow only. This combined with
the continuity equation {1} and equation (3) yields
the so-called local solute redistribution equation

de éc

rrhd G

+(1 —k)c [ (4)

It should be noted that the Scheil description re-
quirement of thermodynamic equilibrium at the solid-
liquid interfaces is violated in a remelting situation if
the mean liquid concentration has become different
from what it was during the solidification [21]. As a
result of this, one has to quantify the solute con-
centration locally in the grains or the dendritic struc-
ture during solidification if Scheil’s equation is to be
invoked in a macrosegregation modelling [9, 21-23].

The field quantities f and V; appear in the energy
balance equation for our problem and represents there
the mathematical coupling between the evolution of
the temperature field and the above discussed inter-
dendritic flow and segregation problems. This coup-
ling disappears, however, if heat transfer due to the
forced advection of the melt is neglected, and f in
the energy equation is approximated by a function
uniquely given by the temperature (cf. for example
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[24]). In the rest of this report the temperature field
and thereby the liquid concentration field are there-
fore regarded as known and input to the governing
equations (1), (2) and (4).

3. A ONE DIMENSIONAL CASE STUDY

Ali main phenomena (i.e. the pressure driven inter-
dendritic melt flow, the macrosegregation in the mush,
and the surface segregation) of the above outlined
mathematical model can be studied in the simple one
dimensional case study sketched in Fig. 2. The spatial

coordinate is denoted by x, and the boundary having

temperature equal to the liquidus temperature is
initially situated at x = 0. The thickness of the mushy
zone is then 0.03 m, and the exudation is modelled for
a period of 100 s. The pressure at x = §is 2340 Nm™*
(which corresponds to a metallostatic head of 0.1 m)
throughout the process. It should be noted that this
model problem is very similar to the surface exudation
problem studies experimentally by Ohm and Engler
[2].¥ The mushy zone thickness and the metallostatic
head are therefore chosen in accordance with values
applied in this reference.

For simplicity we have assumed the temperature to
be stationary and related to x by

T=Ti,—bx (5)

where b = 2600 K m™' and T, equals the initial value
of the liquidus temperature, 905.5 K (632.5°C). The
decrease in solute content in the mush due to the
exudation leads to a solidification in spite of the
stationary temperature conditions. The increased
value of the liquidus temperature resulting from the
decrease in solute content results furthermore in a
drift in negative x direction of the boundary initially
situated at x = 0.

The alloy in the case study is Al-5% Mg. We find
from the Al-Mg phase diagram [25, p. 24] that the
relation between the liquid concentration and the tem-
perature, 7, can be approximated by

- (Thq T) (6)

where Tiy = 933 K (660°C) is the liquidus tem-
perature of pure aluminum, and a is approximated by
the constant 550 K. ¢ as a function of x (cf. Fig. 2)
which is input to the differential equations of the
model, can then easily be calculated from equations
(5) and (6). The partition coefficient, k, is approxi-
mated by the constant 0.41.

1 Due to lack of quantitative measurements, it is unfor-
tunately not possible to use the results in ref. [2] for exper-
imental validation of the modelling.
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Surface segregation
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F1i. 2. Principals of the one dimensional model problem.

3.1. Solution of the equations

Since the temperature field, and thereby the liquid
concentration field, is stationary, the governing
differential equations (1), (2) and (4) reduce to

oV
e =0 7
uvép
K -+ Ay +gp =20 (8)
de o
v ra—ned —o )
X ot

where V' is the superficial velocity. The pure sol-
idification situation (no remelting) secures that the
solidification can be handled by the proposed Scheil
description without any need to trace the local solid
solute concentration during solidification. In accord-
ance with the Scheil description of the solidification,
the initial condition for f in the mush as a function
of ¢is
N (k- 1))
£(x.0) = [5@] o<x<r (10

where r is the top position of the mushy zone and
¢y = 0.05. f(x, 0) equals 1 (pure liquid) when x < 0.
In the modelling results presented below p and p are
2385kgm “and 1.2x 1077 N s m~? respectively [26,
p. 944].

From equation (7) it is seen that ¥{r) is independent
of x. By integrating equation (9) with respect to 7 and
equation (8) with respect to x from the current bottom
position, x,(z) to the top position. » of the mushy
zone, we obtain

. y (I b de
fix, B -—f(’(,o)" 1*;,; J“ V(l); ?:x(gf (h
and
Polt) +pgxo(n) = pgr
j" ox ’
L e e
H Lo KU G 0]

Ppo(1) s here the metallostatic pressure at x,(7), and we

V(ry =

note that p(7) + pgx,(1) equals the known pressure
(2340 Nm ) atx = 0.

f(x, 1) has been determined by a numerical cal-
culation of the integral (11) with V{(s) updated
between every time step by equation {12). A mid point
integration scheme has been applied in the spatial
integration. x,(z) is given by inserting the current
value of the liquidus temperature, 7y,(¢), into equa-
tion (5). 7,,,(¢) is updated between every time step by
replacing e in equation (6) with the current value of
the total solute concentration, ¢ (cf. equation (3) with
Cefér = 0), at the current mush boundary.

3.2, Calculation of segregation

The mean thickness of the surface layer which
develops at x = r constitutes a measure of the surface
segregation. The mean thickness, Ar, is given by

Ar = j V{ncr.

)

{(13)

The total solute concentration in this layer is equal to
e{r) = 0.19 (cf. Fig. 2).

The macrosegregation in the mushy zone, AZ, as a
function of time is given by the difference between
the total solute concentration at time ¢ and at ¢ = 0.
Integration of equation (3) in which the time deriva-
tive of ¢ 1s zero, with equation (9) inserted yields

- ! {7(' - o~
Al = — L Vot
{

y OX

(4

We note that the special case of constant gradient
cefdx leads to a A¢ which is independent of x.

3.3, Modelling results
There is a lack of quantitative permeability data
for mushy aluminum alloys. In their study of the
intcrdendritic melt flow in a Pb-20% Sn alloy, Streat
and Weinberg [15] derived the relation

.1 o

K= " =" (15)
where # is the primary dendrite spacing and © the
tortuosity. They determined 1 to be 4.6 for values of
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y ranging from 20 to 100 pm. n = 60 um then leads
toyx~ 1.5x 1072 m’.

It 1s of course questionable whether this y-value
measured for Pb-20%3n is applicable to the mod-
elling of Al-5%Mg, particularly because 7 frequency
is considered to lic between 1.4 and 2 which is con-
siderably lower than Streat and Weinberg’s measured
value. Since 7= 1.4 gives y & 60x 1072 m® {when
y = 60 um), it becomes clear that a quite different
value of y might be the correct one in the present case
study.

Instead of making any further speculations on what
the value of y should be, we have chosen its value to
be 1x 107", 10x 107" and 100x 107 m? respec-
tively. We have then studied the modeling results for
the mean thickness of the surface layer defined by
equation (13) and the macrosegregation in the mush
defined by equation (14) for these three y-values.

From equation (12) it is seen that the largest y-value
gives the largest value of ¥ and thereby the most
significant surface segregation and macrosegregation.
The high segregation leads rapidly to a pronounced
decrease in the liquid fraction and a corresponding
decrease of the melt flow. This effect is reflected in
Fig. 3 where we see that Ar and the absolute value of
Aéfory = 100 x 10~ m” have a rapid increase during
the first 30 s followed by a much slower increase. For
the lower values of y there is on the other hand a more
steady but slower growth of both Ar and [A¢|.

In the proceeding part of the discussion we have
taken y to be its intermediate value equal to 10 x 1072
m?. We see from Fig. 3 that this leads to a mean
thickness of the surface segregation layer after 100 s

0.0025 . . , .
-12
0.0020 - Y= 100x 10 2w
0.0015 E
Ar {m]
0.0010

0.0005

-0.002
-0.004
AF
0,006 ]
-0.008 B
y=100x 10" m

0010 ¢ i

(1] 20 40 60 30 100

£ Is}

FI1G. 3. Mean thickness of the exudated surface segregation
layer and macrosegregation in the mushy zone as functions
of time for different values of 7.
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FIG. 4. Velocity of the melt into the mush as a function of
time (y = 10x 10~ m?%),

approximately equal to 1 mm. It is furthermore seen
that AZ ~ —0.005 after 100 s wheny = 10x 10~ "2 m?,
The total solute concentration has in other words
decreased from the initial 5% down to approximately
4.5%.

V(r) is shown in Fig. 4, and it is seen how V{(¢)
decreases as time proceeds. This result corresponds to
the decrease in liquid fraction being revealed in Fig.
5. Also the drift in the position of the ‘hot’ boundary
of the mushy zone is seen in Fig. 5. While x = 0 is the
nitial position for f= 1, it turns out that f equals
one at approximately —0.001 m after 100 s.

When the velocity V has been determined, it is of
interest to compare the advective transport of thermal
energy with the diffusive energy flux. While the latter
of these is given by Fourier’s law, 4(87/0x), where the
conductivity, 4, is approximated by 100 W m™' °C~',
the advective heat flux is pe, 7V where the heat
capacity, ¢,, is 1080 J kg=' °C [26, p. 941]. With
0T]ox =b=2600°Cm~", T~ 1000 K and ¥ ~ 10~°
m s~ this means that the diffusive energy transport
is approximately 10 times larger than the advective
transport. This result is in agreement with the assump-
tion made in Section 2 of neglecting the temperature
change, and thereby the change of ¢, due to thermal
advection. Tt should, however, be emphasized that
the above consideration does not generally justify the
assumption of neglecting the advection of thermal
energy. While a decrease in temperature gradient leads

1.0

08

06 L

04 r

02

0 N : : L : :
0 0.01 0.02
x [m]
FiG. 5. Liquid fraction in the mushy zone at 1 =0 s and
t=100s (y = 10x 10~ m?).

0.03
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to decreased diffusion, there is no reason for a tem-
perature gradient decreasc to lead to a decreasc in V.

4. CONCLUSION

o A mathematical model for the development of
a scgregated layer of exudated droplets during DC
casting of aluminum ingots is established.

e Assuming the temperature field and its evolution
with time as known, it has been pointed out how
the model can quantify the interdendritic melt flow
through the mushy zone and the interaction between
this flow and the solid-iquid phase transition in the
mush. Hence, also the decrease of the total solute
concentration in different positions of the mush as a
result of the exudation can be determined.

e The main physical phenomena included in the
model have been studied in a simple one dimensional
case study.
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