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Abstract-A mathematical mode1 for the development of a segregated layer of exudated droplets during 
DC casting of aluminum ingots is established. The model accounts for the metallostatic pressure driven 
interdendritic melt flow through the mushy zone by a Darcy type equation, the surface segregation due to 
this melt flow, and the decrease of the total solute concentration in different positions of the mush as a 
result of the exudation. The solution domain for the governing differential equations is constituted by the 
mushy zone of the cast. The main physical phenomena included in the model have been studied in a simple 

one dimensional case study. 

1. INTRODUCTION 

THE SURFACE quality of DC cast aluminum ingots 
is often reduced by a segregated layer of exudated 

droplets. Compared to the nominal content of alloy- 
ing elements, the surface layer is considerably 

enriched, and it is believed to be a main cause of 
edge cracking during hot rolling of DC cast slabs [I]. 
Furthermore, surface segregation developed during 
casting of extrusion ingots can lead to large local 
variations in extruded profiles. The removal of the 

exudations before further processing of the ingot 

entails high costs. 
This kind of surface segregation is caused by inter- 

dendritic flow of enriched liquid through the mushy 
zone. Two essential driving forces for surface seg- 
regation are believed to exist, namely the metallostatic 
pressure and forces generated by the volume expan- 

sion of the re-heated, mushy shell. Ohm and Engler 
[2] separated these two mechanisms experimentally, 
and showed that a surface segregation layer caused 
by volume expansion is very small compared to a layer 
resulting from a pressure driven exudation. Also other 
authors [3-61 state that surface segregation in alumi- 
num DC casting is caused by a pressure drop through 
the mushy zone, and that this drop is induced by air 
gap formation between the partly solidified shell and 

the mould. A sketch of the principles of this mech- 
anism is shown in Fig. 1. 

This report is directed towards the mathematical 
modelling of this surface segregation phenomenon. 
Our aim is to establish a set of differential equations 
by which pressure driven interdendritic melt flow, as 
indicated in Fig. 1, and its interaction with the solid- 
liquid phase transition in the mush can be modelled. 

In former studies on macrosegregation the various 
types such as, for example, centerline segregation and 
inverse segregation, were treated as separate phenom- 
ena. Flemings and Nereo [7] showed, however, that 
these as well as other types of macrosegregation result 

from the same basic mechanism, and can quan- 

titatively be described by the same set of equations. 
A similar point of view lies behind the more recent 
literature in which the differential field equations for 

the mechanics of the mushy zone have been tho- 

roughly discussed. Important references are [S-13], 
and several other relevant papers are cited in these 
references. Most of the case studies based on the math- 
ematical field descriptions are concerned with prob- 

lems in which thermal or thermo-solutal, free con- 
vection is the driving mechanism for the interdendritic 

melt flow. We believe, though, that the metallostatic 
pressure driven interdendritic melt flow in Fig. 1 could 
also have been modelled if pertinent boundary con- 

ditions on the pressure field were imposed. However, 
no such studies are known to the author. 

Of particular interest to the present study is Bux- 
mann’s paper [5] in which a problem similar to ours 
was modelled. While Buxmann based the melt flow 

modelling on a global treatment of the mushy zone, 
we have represented the mush by a Darcy type of 
momentum balance differential equation with a liquid 
fraction dependent permeability. 

Even though the basis for our modelling has been 
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FIG. 1. Principles of the surface segregation mechanism in 
aluminum DC casting. 
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NOMENCLATURE 

fl slope of the liquidus line of the phase t time [s] 
diagram [K] T temperature [K] 

h temperature gradient in the case study T h liquidus temperature [K] 
[K mm ‘1 T& initial liquidus temperature [K] 

c solute concentration in the liquid part of T$ liquidus temperature of pure aluminum 
a volume element [ -1 WI 

i? total solute concentration in a volume V, superficial velocity component [m s ‘] 

clement [ -1 V superficial velocity in the case study 

(‘II initial solute concentration [ -1 bs ‘I 
A i macrosegregation in the mushy zone. .Y, position vector component [m] 

c-c, [-] .Y position in the case study [m] 

(‘P specific heat [J kg ’ K ‘1 .\‘(I bottom position for the mushy zone in 

.f liquid fraction [ -1 the cast study [ml. 

.r/ acceleration due to gravity [m ~~~‘1 
k equilibrium partition ratio [ -1 

K permeability [m’] Greek symbols 
L specific heat of fusion [J kg ‘1 4, Kronecker delta [ -1 

P pressure [N m ‘1 ., material parameter, ~‘BxT [m’] 

1~0 metallostatic pressure at .Y = .Y(, in the ‘I primary dendrite spacing [m] 

case study [N m ‘1 I’ dynamic liquid viscosity [N s m ‘1 
I top position of the mushy zone in the case iL thermal conductivity [W m ’ K ‘1 

study [m] P density [kg m ‘1 
Al mean thickness of the surface layer [m] 5 tortuosity [-I. 

found in the differential equation literature cited 
above, a major intention is to simplify the math- 

ematical description as much as possible. The model, 
and the assumptions behind it are discussed in Section 
2. and Section 3 is devoted to a simple one dimensional 
case study. 

2. GOVERN!NG EQUATIONS 

Three physical phenomenon are to be accounted 
for by the model. These are the forced convection of 
the interdendritic melt flow due to the pressure drop 
through the mushy zone, the surface segregation 

caused by this melt flow, and the decrease of the total 
solute concentration, i.e. the macrosegregation, as a 

result of the exudation. It should be noted that the 
dccrcase of the total solute concentration leads to a 
decrease in liquid fraction, i.e. solidification. 

We apply a frame of reference moving with the 

same velocity as the completely solidified part of the 
cast. The spatial coordinates arc denoted by X, (i = I, 
2. 3) (cf. Fig. I) and t is time. The volume averaged. 
or superficial. velocity. V, is applied as the measure 
for melt motion. Since forces generated by volume 
expansion are of minor importance, we assume that 
the solid and liquid densities are constant and equal. 
This means that the continuity equation reduces to 

The solid part of the mush is assumed to be inter- 

connected and moving with the same speed as the 
completely solidified part of the cast, and no defor- 
mation of this solid matrix takes place. The momen- 
tum balance in the mush is modelled by a Darcy type 

equation 

where the permeability K is dependent on the liquid 

fraction. p, p, y and p are here the pressure, the density, 
the acceleration due to gravity and the dynamic liquid 

viscosity respectively, and 6,, is the Kronecker delta. 
The solution domain for the melt flow problem is 

restricted to the mush by imposing the pressure along 
the liquidus isotherm as a boundary condition, and 
assuming this pressure to be equal to the known metal- 
lostatic pressure. This assumption implies that the 
interaction between the studied forced convective flow 

and any free convection in the interdendritic melt or 
in the liquid above the mush resulting from buoyancy 
forces is neglected. 

Close to the liquidus isotherm, it might be some- 
what inaccurate to neglect this interaction since the 
pressure drop associated with the forced convection 
decreases with increasing permeability. In industrial 
aluminum alloys, typical values of the density differ- 
ence between ‘hot’ and ‘cold’ or between ‘pure’ and 
‘enriched’ regions are of the order 100 kg m ‘. The 
buoyancy force, which is represented by a gravity 
multiplied by this density difference term, is therefore 
of the order 10’ N m -‘. However, the pressure gradi- 
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ent will increase and become considerably larger than 
the buoyancy forces as the permeability decreases. A 
metallostatic head of for example 0.04 m acting on a 
mush of thickness 0.1 m leads to a total pressure 
gradient through the mush of the order of lo4 N mm3 
which is 10 times larger than the buoyancy forces. 

It should be noted that the position of the mush-- 
liquid boundary is determined by the time evolution 
of the temperature field. The position will furthermore 
be changed by a change in the total solute con- 
centration at the mush boundary, even if the tem- 
perature is constant. 

The other boundaries are the mush-solid, mush- 
air and mush-mould/hot top interfaces (cf. Fig. 1). p 
equals zero along the mush-air interface, and along 
the mush-solid and mush-mouldjhot top interfaces, 
the normal component of the superficial velocity 
equals zero. 

Different relations between the pe~eability, X; and 
the liquid fraction, 5 exist in the literature (see for 
example [14-191). In the case study in Section 3 we 
have simply assumed the permeability to be pro- 
portional to the liquid fraction squared as derived and 
applied by Mehrabian et al. [20] in the modelling of 
interdendritic fluid flow under influence of gravity. 

We restrict the study to a binary alloy, and model 
the solidificaton by the Scheil equation written in the 
form 

where ? is the total solute concentration, c the solute 
concentration in the liquid part of the mush and 
k = k(c) the equilibrium partition ratio. We fur- 
thermore assume that solute enters or leaves the vol- 
ume element by liquid flow only. This combined with 
the continuity equation {l) and equation (3f yields 
the so-called local solute redistribution equation 

.f~+~,~~i+(l-k)c~~=o, (4) 

It should be noted that the Scheil des~~ption re- 
quirement ofthe~odynamicequilibrium at the solid- 
liquid interfaces is violated in a remelting situation if 
the mean liquid concentration has become different 
from what it was during the solidification [21]. As a 
result of this, one has to quantify the solute con- 
cent~~tion locally in the grains or the dendritic struc- 
ture during solidi~cation if Scheil’s equation is to be 
invoked in a macrosegregation modelling [9,21-231. 

The field quantities .f and Vi appear in the energy 
balance equation for our problem and represents there 
the mathematical coupling between the evolution of 
the temperature field and the above discussed inter- 
dendritic ffow and segregation problems. This coup- 
ling disappears, however, if heat transfer due to the 
forced advection of the melt is neglected, and ,f in 
the energy equation is approximated by a function 
uniquely given by the temperature (cf. for example 

[24]). in the rest of this report the temperature field 
and thereby the liquid concentration field are there- 
fore regarded as known and input to the governing 
equations (l), (2) and (4). 

3. A ONE DIMENSIONAL CASE STUDY 

All main phenomena (i.e. the pressure driven inter- 
dendritic melt Row, the macrosegregation in the mush, 
and the surface segregation) of the above outlined 
mathematical model can be studied in the simple one 
dimensional case study sketched in Fig. 2. The spatial 
coordinate is denoted by s, and the boundary having 
temperature equal to the liquidus temperature is 
initially situated at s = 0. The thickness of the mushy 
zone is then 0.03 m, and the exudation is modelled for 
a period of 100 s. The pressure at .r = 0 is 2340 N m-’ 
(which corresponds to a metallostatic head of 0. I m) 
throughout the process. It should be noted that this 
model problem is very similar to the surface exudation 
problem studies experimentally by Ohm and Engler 
[2].t The mushy zone thickness and the metallostatic 
head are therefore chosen in accordance with values 
applied in this reference. 

For simplicity we have assumed the temperature to 
be stationary and related to s by 

where b = 2600 K m _ ’ and T& equals the initial value 
of the liquidus temperature, 905.5 K (632S”C). The 
decrease in solute content in the mush due to the 
exudation leads to a solidification in spite of the 
stationary temperature conditions. The increased 
value of the liquidus temperature resulting from the 
decrease in solute content results furthermore in a 
drift in negative .Y direction of the boundary initially 
situated at .Y = 0. 

The alloy in the case study is Al-5% Mg. We find 
from the AI-Mg phase diagram [25, p. 241 that the 
relation between the liquid concentration and the tem- 
perature, T, can be approximated by 

+;;-T) (6) 

where Tt: = 933 K (660°C) is the liquidus tem- 
perature of pure aluminum, and (I is approximated by 
the constant 550 K. c as a function of x (cf. Fig. 2) 
which is input to the differential equations of the 
model, can then easily be calculated from equations 
(5) and (6). The partition coefficient, k, is approxi- 
mated by the constant 0.41. 

_F Due to lack of quantitative measurements, it is unfor- 
tunately not possible to use the results in ref. [2] for exper- 
imental validation of the modelling. 
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Flci. 2. Principals of the one dimensional model problem 

3.1 Solution of the equations 

Since the temperature field, and thereby the liquid 
concentration field, is stationary, the governing 
difl‘erentiat equations (I), (2) and (4) reduce to 

where V is the superficial velocity. The pure sol- 

idification situation (no remelting) secures that the 
solidification can be handled by the proposed Scheil 

description without any need to trace the local solid 
solute concentration during solidification. In accord- 
ance with the Scheil description of the solidification, 
the initial condition for f in the mush as a function 

of (’ is 

where Y is the top position of the mushy zone and 
ct, = 0.05. ,f’(x, 0) equals 1 (pure liquid) when .Y < 0. 
In the modelling results presented below /-I and 1~ are 
2385 kg m 3 and I.2 x IO ’ N s m ’ respectively /26. 
p. 9441. 

Fromequation (7) it isseen that V(r) isindependent 

of.\-. By integrating equation (9) with respect to I and 
equation (8) with respect to x from the current bottom 

position, xo(r) to the top position, r of the mushy 
zone, we obtain 

f’(.x, t) =.f’(x, 0) - ’ ~~ p’ J I-k t, 
V(i)): $1 (I 1) 

and 

pi,(t) is here the metallostatic pressure at .x,,(t), and we 

note that p,(t) +~~~.x,,(t) equals the known pressure 

(2340 N m _>) at .\’ = 0. 
f(.~, I) has been determined by a numerical cal- 

culation of the integral (I I) with V(t) updated 
between every time step by equation (12). A mid point 
integration scheme has been applied in the spatial 

integration. .x,,(t) is given by inserting the current 
value of the liquidus temperature, 7;,,(t), into equa- 
tion (5). T,,,(t) is updated between every time step by 
replacing c in equation (6) with the current value of 

the total solute concentration, IT (cf. equation (3) with 
ic,/Sr = O), at the current mush boundary 

3.1. Crilrdution qf’se,yr~,y~ycltion 

The mean thickness of the surface layer which 
develops at .I- = r constitutes a measure of the surface 

segregation. The mean thickness, Ar, is given by 

The total solute concentration in this layer is equal to 
a z 0.19 (cf. Fig. 2). 

The macrosegr~gation in the mushy zone, AP, as a 
function of time is given by the difference between 
the total solute concentration at time t and at i = 0. 
Integration of equation (3) in which the time deriva- 
Live of c is zero, with equation (9) inserted yields 

We note that the special case of constant gradient 
ic~.‘i?u leads to a AE which is independent of s. 

There is a lack of qL~antitative perjneabi~ity data 
for mushy aluminum alloys. In their study of the 
intcrdendritic melt flow in a Pk-20% Sn alloy. Streat 
and Weinberg [I 51 derived the relation 

where t? is the primary dendrite spacing and 5 the 
tortuosity. They determined T to be 4.6 for values of 
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g ranging from 20 to 100 pm. ‘I = 60 r_cm then leads 
to 1’ = 1.5 x IO-l2 m2. 

It is of course questionabIe whether this y-value 
measured for Pb-20%Sn is apphcable to the mod- 
elling of Al-S%Mg, particularly because z frequency 
is considered to lie between 1.4 and 2 which is con- 
siderably lower than Streat and Weinberg’s measured 
value. Since r = 1.4 gives y x 60 x IO-“, m’ (when 
rl = 60 pm). it becomes clear that a quite different 
value of y might be the correct one in the present case 
study. 

Instead of making any further speculations on what 
the value of ;I should be, we have chosen its value to 
be 1 x IO-“, 10x IO-” and 100x IO-” m2 respec- 
tively. We have then studied the modeling results for 
the mean thickness of the surface Iayer defined by 
equation (13) and the macrosegregation in the mush 
defined by equation (14) for these three y-values. 

From equation (12) it is seen that the largest y-value 
gives the largest value of V and thereby the most 
significant surface segregation and macrosegregation. 
The high segregation leads rapidly to a pronounced 
decrease in the liquid fraction and a corresponding 
decrease of the melt flow. This effect is reflected in 
Fig. 3 where we see that Ar and the absolute value of 
A? for 7 = 100 x lo-” m2 have a rapid increase during 
the first 30 s followed by a much slower increase. For 
the lower values of y there is on the other hand a more 
steady but slower growth of both Ar and IA?]. 

In the proceeding part of the discussion we have 
taken “/ to be its intermediate value equal to 10 x lo-” 
ml. We see from Fig. 3 that this leads to a mean 
thickness of the surface segregation layer after 100 s 

0.0025 , I 

0 20 40 60 80 100 

f Is1 

FIG 3. Mean thickness of the exudated surface segregation 
layer and macrosegregation in the mushy zone as functions 

of time for different values of 7. 
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FIG. 4. Velocity of the melt into the mush as a function of 
time (y = 10x lo-” m’). 

approximately equal to 1 mm. It is furthermore seen 
that A.C z -0.005 after 100 s when y = 10 x 1O‘-‘2 m2. 
The total solute concentration has in other words 
decreased from the initial 5% down to approximately 
4‘5%. 

V(t) is shown in Fig. 4, and it is seen how V(t) 
decreases as time proceeds. This result corresponds to 
the decrease in liquid fraction being revealed in Fig. 
5. Also the drift in the position of the ‘hot’ boundary 
of the mushy zone is seen in Fig. 5. While x = 0 is the 
initial position for f= 1. it turns out that ,f equals 
one at approximately -0.001 m after 100 s. 

When the velocity Y has been determined, it is of 
interest to compare the advective transport of thermal 
energy with the diffusive energy flux. While the latter 
of these is given by Fourier’s law, A(aT/dx), where the 
conductivity, 2, is approximated by IO0 W mm’ “C-‘, 
the advective heat flux is pc,TV where the heat 
capacity, cpr is 1080 J kg-’ “C [26, p. 9411. With 
i?T/ax = b = 2600°C m-‘, T - 1000 K and Y - 1O-5 
m s-’ this means that the diffusive energy transport 
is approximately IO times larger than the advective 
transport. This result is in agreement with the assump- 
tion made in Section 2 of neglecting the temperature 
change, and thereby the change of c, due to thermal 
advection. It should, however, be emphasized that 
the above consideration does not generally justify the 
assumption of neglecting the advection of thermal 
energy. While a decrease in temperature gradient leads 

FIG. 5. Liquid fraction in the mushy zone at I = 0 s and 
t = 100 s (y = 10 x IO-‘” m2). 
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to decreased diffusion, there is no reason for a tem- 
peraturc &rddient decrease to lead to a decrease in V. ’ 

4. CONCLUSION Y 

l A mathematical model for the development of 

a scgrcgated layer of exudated droplets during DC 
casting of aluminum ingots is established. IO 

l Assuming the temperature field and its evolution 

with time as known, it has been pointed out how 1 I 
the model can quantify the interdendritic melt flow 

through the mushy zone and the interaction between 
this flow and the solid-liquid phase transition in the 

I2 

mush. Hcncc. also the decrease of the total solute 
concentration in different positions of the mush as a 
result of the exudation can bc determined. 13 

l The main physical phenomena included in the 

model have been studied in a simple one dimensional 14. 
case study. 
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